Stability estimates for systems with small cross-diffusion
نویسندگان
چکیده
منابع مشابه
Cross-diffusion Induced Instability and Stability in Reaction-diffusion Systems
In a reaction-diffusion system, diffusion can induce the instability of a uniform equilibrium which is stable with respect to a constant perturbation, as shown by Turing in 1950s. We show that cross-diffusion can destabilize a uniform equilibrium which is stable for the kinetic and self-diffusion reaction systems; on the other hand, cross-diffusion can also stabilize a uniform equilibrium which...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملOn Persistence and Stability of Some Biological Systems with Cross Diffusion
The concept of cross diffusion is applied to some biological systems. The conditions for persistence and Turing instability in the presence of cross diffusion are derived. Many examples including: predatorprey, epidemics (with and without delay), hawk-dove-retaliate and prisoner’s dilemma games are given.
متن کاملEnergy estimates for continuous and discretized electro-reaction-diffusion systems
We consider electro-reaction-diffusion systems consisting of continuity equations for a finite number of species coupled with a Poisson equation. We take into account heterostructures, anisotropic materials and rather general statistic relations. We investigate thermodynamic equilibria and prove for solutions to the evolution system the monotone and exponential decay of the free energy to its e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 2018
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/2018036